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Abstract 
You can write C++ programs that are statically type safe and have no resource leaks. You can do that 

without loss of performance and without limiting C++’s expressive power. This model for type- and 

resource-safe C++ has been implemented using a combination of ISO standard C++ language facilities, 

static analysis, and a tiny support library (written in ISO standard C++). This supports the general thesis 

that garbage collection is neither necessary nor sufficient for quality software. This paper describes the 

techniques used to eliminate dangling pointers and to ensure resource safety. Other aspects – also 

necessary for safe and effective use of C++ – have conventional solutions so they are mentioned only 

briefly here. 

The techniques and facilities presented are supported by the Core C++ Guidelines [Stroustrup,2015] and 

enforced by a static analysis tool for those [Sutter,2015]. 

1. Introduction 
Consider  

void use(FILE* p); 

int some_code(int x) 
{ 
 FILE* f = fopen("foo","w"); 
 if (f==0) error("cannot open file"); 
 if (0<x) 
 { 
  use(f); 

// … do a lot of work … 
  } 

else 
   return -1; 
  long pos = ftell(f);  // read through f 
  // … 

 fprintf(f, "Die, die, die!\n"); // read and write through f 
 fclose(f); 
 return 0; 

 }; 
 
This looks innocent enough, but the definition of use() is 
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void use(FILE* p) 
{ 
 // … 
 free(p); 
 // … 
} 

 
Thick books could be written about what – in general – is wrong with this simple code. Experienced C 
and C++ programmers would quickly eliminate the problems in this small example, but we have decades 
of experience showing that the kind of errors exhibited by this simple example are extremely hard to 
eliminate in large code bases. We deliberately used a pure C example to emphasize that the problems 
we attack are long standing (40+ years) and not limited to C++. They are in various forms shared by all 
languages with manual resource management. C++’s facilities are part of our solution, rather than part 
of the problem. 
 
Our aim is to show how to systematically prevent the classes of errors demonstrated by this small code 
sample, without compromising the fundamental strengths of C++.  
 
Consider the fundamental errors in the example: 
 

1. Resource leaks: If this code takes the early return, the file is never closed and the memory and 
operating system resources are not released. 

2. Access through an invalid pointer: If this code doesn’t take the early return, free() makes the 
pointer invalid (assuming the pointer points to a FILE that was dynamically allocated using 
malloc()).  The memory pointed to will most likely be reused. In particular, the ftell() attempts to 
read through the dangling FILE* and accesses memory that no longer holds a FILE. This is a type 
violation. 

3. Memory corruption: If this code doesn’t take the early return, free() makes the pointer invalid 
(assuming the pointer points to a FILE that was dynamically allocated using malloc()). The 
memory pointed to will most likely be reused. In particular, a write through an invalid pointer, 
as in the fprintf(), is likely to overwrite memory that hold parts of completely unrelated objects. 
This is a type violation. 

4. Confusion between static and dynamic objects: Somewhere in the documentation, it says 
whether the FILE* returned by fopen() points to a FILE that is statically or dynamically allocated. 
However, compilers do not read manuals, and calling free() on a statically-allocated object or 
failing to call free() on a dynamically-allocated object leads to serious errors (especially in large, 
complex systems). 

5. Type-incorrect deallocation:  Somewhere in the documentation, it says that you should use 
fclose() rather than free() to properly close a file. However, compilers do not read manuals, and 
there is nothing in the type system that will catch this error. Even if the FILE* returned by 
fopen() points to a FILE that was allocated using malloc(), calling free() will not release OS 
resources (and maybe not even all memory, if there were additional allocations). 
 

More than forty years of C and other languages prove that (given sufficient effort) these problems can 
often be handled “by hand” and through extensive testing. However, experience also shows that “being 
careful” and extensive testing is a time sink. Often, these efforts also leave serious errors in the code, 
causing crashes and security violations. We must do better. 
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Problems [2-4] are results of explicit memory release and the presence of multiple storage classes. They 
can be solved by using garbage collection, but problems [1 and 5] remain whether or not we use GC and 
it requires careful coding to avoid such problems. The problem is that GC reclaims memory only.  
Resources are not just memory; there are also file handles, thread handles, locks, sockets, and many 
other “non-memory resources.” Adding finalizers to GC partially addresses this problem but even 
something as simple and well-known as calling fclose() at GC time is almost always unsuitable. Finalizers: 
 

 are executed at a nondeterministic time on a system thread, which can inject deadlocks with 
program threads; 

 are not guaranteed to run at all, so there is no guarantee the file will ever be closed as long as 
the program is running; 

 can lead to excessive resource retention when the GC is not run frequently; and 

 can make GC unnecessarily expensive if a finalizer can place a reference to an object it was 
supposed to destroy in an accessible location (“resurrection”). 

 
Consequently, the use of finalizers for resource cleanup is now actively discouraged in the major GC 
environments that support them, leaving the release of non-memory resources as a manual activity. 

 
C++ has always had the language mechanisms to trivially cope with problems [1 and 5] (“resource 
safety”). Since 1988, techniques for doing so have been widely used. Since 1998, they have been an 
integral part of the ISO C++ standard library. 
 
On the other hand, problems [2, 3, and 4] (“memory safety”, “dangling pointers”, or “lifetime safety”) 
have been a constant worry and a major source of errors in real-world code. 
 
This article is a popular/informal description of a solution to these problems. A more formal and detailed 
description can be found in a companion paper [Sutter, 2015]. The techniques outlined here are made 
concrete by the Core Guidelines [Stroustrup, 2015] and their support tools. 
 

2. Design constraints 
From its inception C++ was developed as a series of improving approximations to a set of ideals. The 

ideals included – and still include: 

1. Perfect static type safety 

2. Automatic release of general resources (perfect resource safety) 

3. No run-time overhead compared to good hand-crafted code (the zero-overhead principle) 

4. No restriction of the application domain compared to C and previous versions of C++  

5. Compatibility with previous versions of C++ (long-term stability is a feature) 

Perfectly matching these ideals (and more; see [Stroustrup,1994]) seemed impossible. However, this 

paper explains how we meet the first two ideals without damaging the next two using a combination of 

coding guidelines, static analysis, and simple library support.  
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3. Memory safety 
Dangling pointers is the darkest nightmare of a language that relies on pointers and explicit release of 

resources. The C++ constructor/destructor mechanism was introduced to handle the resource 

management part of that problem (see section 4), but pointers with their obvious opportunities for 

serious problems remain. Consider a few more examples: 

int* glob; 
 
void squirrel(int* q) 
{ 
 // … 
 glob = q; 
} 
 
void g() 
{ 
 int* p = new int{7}; 
 squirrel(p); 
 delete p; 
 // … 
 *glob = 9; // write to deallocated memory 
} 

 

Here, the *glob=9 writes to deallocated memory. It is an example of a large class or problems where 

some code squirrels away a pointer for later use, and then the pointed-to object is deleted. Such errors 

are hard to find and cause serious problems. 

Consider also: 

void g2() 
{ 
 int* p = new int{7}; 
 squirrel(p); 
 delete p; 
 // … 
 delete glob; // double deletion 
} 

 

And finally: 

void g3() 
{ 
 int x = 7; 
 int* p = &x; 
 squirrel(p); 
 // … 
 delete glob; // delete of local variable 
} 
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A global variable is just one way a pointer can escape out of the scope where it is valid. Other ways 

include smart pointers, containers of pointers, objects holding pointers. We track them all. 

These errors are not subtle, but in a large program they can be easily made, are hard to find, and can 

have catastrophic results. We have 40+ years of industrial practice deeming this a hard set of problems.  

Our general solution is conceptually simple, cheap to enforce using static analysis, and free of run-time 

overheads. 

We say that a program is memory safe if every allocated object is deallocated (once only) and no access 

is done through a pointer (or reference, iterator, or other non-owning indirection) to an object that has 

been deleted or gone out of scope (and thus technically isn’t an object any more – just a bag of bits).  

To be type safe, we need memory safety so that an object cannot be accessed through a dangling 

pointer. Such access doesn’t obey type rules. Furthermore, to be perfectly type safe, a program must be 

free of range errors (access beyond the end of an array), free of access through the null pointer, etc. 

(section 6). 

3.1  Owners 
Consider first the problem of deleting objects not on the free store (dynamic memory, heap). Statically 

allocated objects (e.g., global variables), objects on the stack (local objects), and objects that are part of 

an enclosing object (class members) should never be explicitly deleted because they will be implicitly 

destroyed. On the other hand, an object constructed using new must be destroyed using delete. 

Objects can also be allocated using malloc() and deallocated using free() (or similar functions), but the 

techniques described for new and delete apply to those also, so we will not discuss malloc()/free(). 

To avoid confusing pointers that must be deleted from pointer that must not, we introduce the concept 

of an owner. An owner is a pointer to an object allocated by new for which a delete is required. 

Every object on the free store (heap, dynamic store) must have exactly one owner. Colloquially, we also 

refer to an object that holds an owner as an owner (e.g., a map, a shared_ptr, and an array); such 

objects are handled as resource managers (section 4). 

We focus on pointers. A reference is a restricted form of a pointer with some added syntactic sugar, so 

our techniques for pointers also deal with references. 

3.2  A dynamic model 
It is easy to implement the ownership model dynamically: 

 attach an ownership bit to every pointer 

 set the ownership bit when a value returned from new is assigned 

 use delete whenever a pointer with the ownership bit is set goes out of scope 

 use delete before overwriting a pointer with an ownership bit set 

 clear the ownership bit when a pointer not returned from new is assigned 

 set the ownership bit when a pointer with the ownership bit set is assigned (and clear the 

ownership bit on the source; an object cannot have two owners) 

Unfortunately, this model is not practical in the context of C++: It doubles the size of pointers (or 

requires stealing bits out of machine addresses) and adds extra computation for pointer use. That 
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violates the zero-overhead principle. It also breaks link compatibility with every existing C and C++ 

program. 

This was as far as Bjarne got a few years ago. That work was never published because he considered the 

solution useless; it implies inefficiency and incompatibility. It is, however, useful for thinking about 

ownership. 

3.3  A static model 
Fortunately, we can implement a static variant of that dynamic model that implies no run-time overhead 

and no ABI breakage: 

 Mark every T* that is an owner as owner<T*> in the source code. 

 Let new return an owner<T*> 

 Make sure that every owner<T*> is deleted or transferred to another owner<T*>. 

 Never assign a plain T* to an owner<T*> 

The owner template could be a real type, but to ensure ABI compatibility, it is not. It is simply an alias to 

help static analysis tools: 

 template<typename X> using owner = X; 

This owner is part of the Guideline Support Library [Sutter, 2015], often called GSL. Given that, tools can 

ensure that an owner<T*> is used appropriately and that a plain T* is not treated as an owner. For 

example: 

void f(owner<int*> p, int* q) 
{ 
 delete q; // bad! 

// no delete p; also bad 
 } 
 
Note that an owner doesn’t do anything. In particular, it does not have operations that execute delete. 

It simply allows static analysis to detect when the programmer fails to follow the model. Where feasible, 

prefer proper ownership abstractions (e.g., vector and unique_ptr) to simplify programming. 

You can assign an owner<T*> to a plain T*. The result is not two owners, but simply an owner and a 

non-owning pointer to the same object. Because we eliminate the possibility of dangling pointers, this is 

entirely safe and reasonable. 

3.4  Static model limitations 
The dynamic model has the ownership attribute firmly attached to a pointer; in the static model, 

ownership is attached to a pointer’s type. This implies that (using the static model), we cannot mix 

owners and non-owners in a homogenous container (e.g., a vector or an array). For example, consider 

an ordinary piece of (bad) C++: 

vector<X*> glob; 
 
X* mix(X* p1, int i) 
{ 
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 X x = 7; 
 X* p2 = &x; 
 X* p3 = new X{9}; 
 glob = vector<X*>{p1,p2,p3}; 
 if (i%2) 
  return p2; 
 else 
  return p3; 
} 

 

In plain ISO C++, we would be lost. Which elements of glob should be deleted? Should the result of a call 

of mix() be deleted? 

Using the dynamic model, we can look at the elements of glob to see which ones should be deleted and 

we could examine the result of a call of mix() to see if a delete was needed. The deletes could be made 

implicit. 

Using the static model, this code is first rejected because the vector elements disagree about ownership 

and because the return statements disagree about ownership. Next we find that this code is not easy to 

repair: There is no reasonable way of writing C++ that mixes ownership in containers or return 

statements and still avoid leaks and erroneous deletes. To repair this code we have to decide whether 

glob should be a vector<owner<X*>> and whether mix()’s return type should be owner<X*>. Once we 

have decided, we can correct the program appropriately. 

The basic rule is that we must statically (through the type system) know whether a pointer is an owner 

or not. Similarly for a reference: 

int x = 7; 
int& p = (i)? x : *new int{9};  // bad 
owner<int&> q = (i)? x : *new int{9}; // bad 

 

This is a limitation of current (unannotated) C++. There are a few real-world uses of “mixed ownership”. 

To work, they emulate the dynamic model. For example: 

vector<X*> glob; 
vector<bool> glob_owner; 

pair<X*,bool> mix(X* p1, bool own, int i) 
{ 
 X x = 7; 
 X* p2 = &x; 
 X* p3 = new X{9}; 
 glob = vector<X*>{p1,p2,p3}; 
 glob_owner = vector<bool>{own,false,true}; 
 If (i%2) 
  return {p2,false}; 
 else 
  return {p3,true}; 
} 
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Now the users of mix() can examine the hand-crafted ownership bits to ensure proper deletion. For 

example: 

void cleanup() 
{ 
 for (size_t i = 0; i<v.size(); ++i) 
  if (glob_owner[i]) 
   delete owner[i]; 
} 
 

Such code is either brittle or encapsulated in suitable abstractions. 

When we enforce the static ownership model, this code will not compile: Either glob holds owner<X>s 

and we fail to delete some or it holds plain X*s and we “forgot” to keep owners around for all objects.  

To deal with that, we provide a mechanism for locally suppressing checking. Such suppression is 

intended to be used sparingly in trusted implementations of ownership abstractions. They resemble 

casts (explicit type conversions) in that they manually override the type system. 

As implemented, our ownership model considers a pointer as pointing to a full object (e.g., to the 

“outermost” object enclosing by-value data members) or to the beginning of an array. As writers of 

serious optimizers for C++ and garbage collectors know, there are cases where an object is kept alive by 

a pointer into the middle of an object or a pointer to one-beyond-the-end of an object. For example: 

int* tricky(int n) 
{ 
 int* p = new int[n]; 

// … 
 return &p[n/2]; 
 // … 
 return &p[n]; 
} 

 

We handle most such cases, but for a few tricky examples we have to be conservative. Our general 

strategy is “better safe than sorry.” 

3.5  Overuse of owner 
If we used owner in conventional C-style code littered with pointers and subtle uses of pointers the 

result would be unmanageable. Instead, we recommend that most uses of owner be inside implementa-

tions of higher-level abstractions, such as “smart pointers” representing ownership (e.g. shared_ptr) 

and containers (e.g., vector). For example, the basic representation of vector may look like this: 

template<SemiRegular T> 
class vector { 
 owner<T*> elem; // the anchors the allocated memory 
 T* space;  // just a position indicator 
 T* end;   // just a position indicator 
 // … 
}; 
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Systematic use of containers and similar “ownership abstractions” can limit the explicit use of owner in 

application code to examples where we need to maintain ABI compatibility with older code that use 

pointers explicitly in its interfaces. 

Using owner and static analysis is unmanageable for “ordinary C-style code”. We would simply need too 

many owner annotation so that those annotations would themselves become a nuisance and a source 

of errors. This has been seen in languages depending on annotations (such as Cyclone and Microsoft’s 

SAL annotations for C and C++ code) and our own experiments. To be manageable on an industrial scale, 

owner annotation must be rare. We ensure that by “burying” them in proper ownership abstractions, 

such as vectors and unique_ptrs. 

We assert that in good code owner annotations are rare, so that we can assume that a plain pointer (a 

T*) is not an owner. Think: 1000 plain pointers for each owner. 

3.6  Pointer safety 
To use a pointer safely, a pointer may not outlive the object it points to. More precisely, it may not be 

dereferenced after the object it pointed to was destroyed. Ignoring for the moment multithreading 

(section 5), this can be achieved by ensuring that a pointer does not point into a scope that has been 

exited from. 

The simplest example of this rule has been (incompletely) enforced by compilers for decades: 

int* f() 
{ 
 int x = 8; 
 return &x; // bad: pointer to local variable that’s about to disappear 
} 
 

We use a simple set of rules, including: 

 Don’t transfer a pointer to a local to where it could be accessed by a caller 

 A pointer passed as an argument can be passed back as a result 

 A pointer obtained from new can be passed back from a function as a result 

Basically, this means that if you visualize a stack growing up from caller to callee, pointers cannot be 

passed down the stack to below the object they point to. For example: 

int*  f(int* p) 
{ 
 int x = 4; 
 return &x;  // No! would point to destroyed stack frame 
 // … 
 return new int{7}; // OK (sort of: doesn’t dangle, but returns an owner as an int*) 
 // … 
 return p;  // OK: came from caller 
} 

 
As for the rules for owners, the rules for scope also apply to references and objects containing pointers 

or references. For example: 
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vector<int*> glob; 

vector<int*> f() 
{ 
 int x; 
 glob.push_back(&x); // Bad: pointer to local placed in global container 
 vector<int*> v {&x}; 
 return v;  // Bad: v contains pointer to local 
} 
 

As for ownership, the simple static model of scope imposes a few restrictions of use. For example: 

X glob; 

class Silly { 
 X loc; 
 X* p { &glob }; 
 X* mem(int x) { return (x<0)?&loc:p;}  // carefully obscures local and global 
}; 

X* p; 

Silly make() 
{ 
 Silly res; 
 p = res.mem(1); 
 return res; 
} 

void use() 
{ 
 Silly r = make(); 
 *p = 7; 
} 

 

The use of p in *p is safe because p points to global variable. However, our rules see a pointer coming 

from a local object (res) being passed out of scope and deems it bad. More realistic classes, such as 

vector, do not obscure the source of the pointers that return (the way Silly does) so something like a 

pointer to a vector element is no problem – as long as the vector is alive, it points to an object owned by 

the vector. However, examples as subtle as Silly are also known to be error-prone.  

A pointer validly derived from a valid pointer is also valid. Consider: 

int* find(int* first, int* last, int x) 
{ 
 while (first!=last) 
  if (*first==x) 
   return first; 
 return last; 
} 

This is (obviously) essential for the STL algorithms. 
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3.7  Pointer invalidation 
A pointer can become invalid because the object to which it refers is destroyed or reallocated. Consider: 

vector<int> v = { 1,2,3 }; 
int* p = &v[2]; 
v.push_back(4); // v’s elements may move 
*p = 5;   // bad: p might have been invalidated 
int* q = &v[2]; 
v.clear();  // all v’s elements are deleted 
*q = 7;   // bad: p is invalidated 

 

A tool that knows the semantics of vector can determine that v.push_back(4) invalidates p (according to 

the definition in the ISO standard) because the elements of v may be reallocated to make room for 4. 

Similarly, v.clear() invalidates q because it deletes all of v’s elements. 

A dynamic model of invalidation could use back pointers from objects to pointers to objects to perfectly 

track which pointers are valid. As for ownership, such a model has only theoretical interest because of 

the cost in run-time and memory it would incur. Also, it would imply a pointer implementation that is 

incompatible with existing C++. 

Instead, we again use a static model. Essentially, our pointer safety verification tool [Sutter,2015] 

employs a variant of the idea of symbolic execution to detect invalidation. The analysis is compile-time 

and local, so that it has no run-time impact and scales to large code bases. 

As in the case for the ownership and dangling pointer evaluation, the static analysis of evaluation must 

be conservative compared to the dynamic model. Consider: 

void f(int x) 
{ 
 vector<int> v = { 1,2,3 }; 
 int* p = &v[2]; 
 if (x<0) 
  v.push_back(4); // invalidates 
 else 
  v[2] = 4;  // does not invalidate 
 *p = 55; 
} 

 

If we used a dynamic model, we could get an error only when x<0, but using our static model, we 

consider the use of p in *p=55 bad because p might have been invalidated. 

As for dangling pointers and for ownership, this model detects all possible errors. This means that we 

can guarantee that a program is free of uses of invalidated pointers. There are many control structures 

in C++, addresses of objects can appear in many guises (e.g., pointers, references, smart pointers, 

iterators), and objects can “live” in many places (e.g., local variables, global variables, standard 

containers, and arrays on the free store). Our tool systematically considers all combinations. Needless to 

say, that implies a lot of careful implementation work (described in detail in [Sutter,2015]), but it is in 

principle simple: all uses of invalid pointers are caught. 
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Consider a tricky example: 

int* tricky(vector<int>& vi, int x) 
{ 
 if (x) 
  vi.push_back(4); 
 else 
  vi[2] = 4; 
   
} 
 
void use(int x) 
{ 
 vector<int> v = { 1,2,3 }; 
 int* p = &v[2]; 
 tricky(v,x); 
 *p = 7; 
} 
 

Here, tricky(v,x) may or may not invalidate p depending on the value of x. The “trick” is that the tool 

deduces what the function does to its arguments and its return value from the function’s argument and 

return types. Here, the tool knows (without looking at the implementation of tricky()) that tricky() takes 

a vector<int>&  so it can invalidate pointers to its vector<int> argument. Consequently, the call 

tricky(v,x) must be assumed to invalidate pointers to v’s elements, so that *p=7 is rejected as a 

(possible) access through an invalid pointer. 

Note that this is still local analysis; we just look at a function declaration with respect to possible 

invalidation. When invalidation is possible, we must be conservative and assume the worst. We consider 

whole-program analysis incompatible with the needs of large programs, the need for a fast debug cycle, 

and the needs of a language supporting dynamic linking. Whole-program can be useful, and we will use 

it, but not in the usual debug cycle. 

How do we know whether a function invalidates a pointer? In general we do not know, so we must be 

conservative. We assume that const member functions and functions taking const arguments are not 

invalidating. For example: 

vector<int> v = { 1, 2, 3, 4 }; 
int* p = &v[0]; 
 
if (v.size()<10) return; // does not invalidate 
v.push_back(42); // invalidates 

 
In general, const arguments and const member functions are very useful in reducing the number of false 

positives because they eliminate many possibilities for invalidation.  

We can do better if we know the semantics of operations. Continuing the example, consider: 

int x = v[7];  // does not actually invalidate (but function is not const) 
v[7] = 99;  // does not actually invalidate (but function is not const) 
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The calls to v[7] don’t invalidate pointers into v, but looking just at which functions are non-const, we 

cannot know that. Writing to v[7] mutates an element of the vector, but not the structure of the vector, 

so all pointers into the vector remain valid. Thus, a tool can do better if it either knows the semantics of 

the container or we use a [[lifetime(const)]] annotation on that function to help. We dislike annotations 

because they can be misused (causing errors) and because pervasive reliance on annotations makes 

code hard to understand. However, rare annotations on key operations can yield significant 

improvements to analysis (limiting excess conservatism and false positives). 

3.8  Safe pointer use 
As we are catching unsafe uses, we can safely use iterators, smart pointers, and containers of pointers. 

For example, we can safely use raw pointers (T*s) and iterators where we earlier would have worried 

about lifetime issues and may have used smart pointers. For example: 

void some_function(int*, int*); 
 
void user() 
{ 
 int a[10]; 
 some_function(a,&a[10]); 
} 
 

This is perfectly safe because some_function() cannot store an argument pointer away for later use (it 

did not get owners) and (in the absence of concurrency, see Section 5) the targets for the pointers 

cannot go out of scope until after some_function() returns to user(). Importantly, this reduces the need 

to pass around smart pointers. For example: 

void some_function(shared_ptr<int>, int nelem); 
 

void user() 
{ 
 shared_ptr<int> p(new int[10]); 
 // … 
 int* pp = p.get(); 
 some_function(&pp[0], &pp[10]); // needlessly complicated 
 // … 
} 

 

Here, the call of some_function() cannot affect the lifetime of the elements passed, so there is no need 

for manipulating ownership using shared_ptr. 

In function signatures, limiting the use of ownership pointers (e.g., unique_ptr and shared_ptr) to cases 

where you actually want to manipulate ownership is important for generality and performance.  
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4. Resource safety 
C++’s model of resource management is based on the use of constructors and destructors to specify the 

meaning of object construction (initialization) and destruction (cleanup). For scoped objects, destruction 

is implicit at scope exit whereas for objects placed in the free store (heap, dynamic memory) using new, 

a delete is required. This model has been part of C++ since the very earliest days. 

 

4.1  Constructors and destructors 
Consider a simple, classical example: 

template<typename T> 
class Vector { 
public: 
 Vector(int s); // allocate space for s elements of type T and default initialize them 

~Vector(); // destroy the elements and deallocate their memory 
 // … 
}; 
 
void f(int n) 
{ 
 Vector<string> vs(n); 
 // … 
} 
 

For each call of f(), a vector of n strings is constructed and properly destroyed upon exit. This scheme 

works perfectly for scoped objects, members of other objects, and parts of a class hierarchy. It has a 

weakness, though, for objects placed on the free store using new. You have to remember to delete each 

object created once and only once: 

Vector<string>* make(); // construct a Vector<string> using new and fill it (somehow) 
 
void use() 
{ 
 auto p = make(); 
 auto& r = *make(); 
 delete p; 
 // … 
 delete p; 
} 

 

We have two errors here: the object assigned to p is deleted twice and the object bound to r isn’t 

deleted. This kind of problem has been a major problem over the years. The lifetime and ownership 

rules of section 3 ensures that they are now caught. 

A conventional and simple repair of such examples is to use a “smart pointer.” For example: 
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unique_ptr<Vector<string>> make(); // construct a Vector<string> using new and fill it 
 
void use() 
{ 
 auto p = make(); 
 // auto& r = *make(); // bad: the unique_ptr is a temporary 
 auto q = make(); 
 auto& r = *q.get(); 
 // … 
} 

 

We could, of course, handle the problem by adding owner and use guideline support tools to ensure 

that the deletions are done correctly, but that is tedious and low-level. Using a smart pointer abstraction 

(like the ISO C++ standard library’s unique_ptr) is easier and more elegant. 

4.2  Move semantics 
Some form of pointer is necessary for classical object-oriented programming where a base class acts as 

the interface to a number of derived classes of potentially different sizes. However, in the case of Vector 

(and many other classes, including the ISO C++ standard library containers), we do not need run-time 

polymorphism, so we can (and should) eliminate explicit use of pointers. In such cases, we resolve the 

problem like this: 

Vector<string> make(); // construct a Vector<string> using new and fill it 
 
void use() 
{ 
 auto v = make(); 
 auto v2 = make(); 
 // … 
} 

 

To get the Vector<string> out of make() without potentially expensive copying of element, we rely on a 

move constructor: 

template<typename T> 
class Vector { 
public: 

// … usual stuff … 
Vector(Vector&& r) :elem{r.elem}, sz{r.sz} { r.elem=nullptr; r.sz=0; } 

private: 
  owner<T*> elem; 
  int sz; 
 } 
 

That is, the constructor taking the && (rvalue reference) argument doesn’t copy. Instead it moves; that 

is, it “steals” the representation of its argument and makes the argument empty. Such a constructor is 

called a move constructor. 
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This technique of moving objects rather than copying them has been used for decades, but only 

infrequently and unsystematically. The notion of direct language support for move semantics was 

pioneered by Howard Hinnant and is part of C++11. The use of move semantics allows us to move a 

large object implemented as a handle from scope to scope without overhead and without resorting to 

error-prone explicit use of pointers and explicit memory management. 

One implication of having move semantics is that we can completely encapsulate the management of 

non-scoped memory. The basic rule is that news and deletes belong inside the implementation of 

abstractions: “no naked news” and “no naked deletes.” 

4.3  RAII 
A resource manager (also known as a resource handle) is typically structured like the Vector example. In 

fact, Vector is a simplified version of the standard library vector. It controls access to resources (here an 

array of elements on the free store). Typically, some resources are acquired in the constructors and 

released in the destructor. The resource acquisition in the constructor led to the old and cumbersome 

name “Resource Acquisition Is Initialization”, usually abbreviated to RAII. 

For most resources (memory, locks, file handles, etc.), acquisition can fail so a conventional resource 

manager must be able to report an error. The only fully general mechanism for that is throwing an 

exception if resource acquisition fails, and that’s what the standard containers do. This scheme handles 

nested objects, class hierarchies, and containers simply and efficiently. However, there are also schemes 

that rely on explicit error handling. Those are brittle and rarely generalize; the best basically hand-

simulate RAII. 

To be safe from exception throws, an owner pointer should not be the only handle to an object in a 

context where an exception can be thrown. For example: 

void f(int x) 
{ 
 auto p = new int{666};  // bad: will leak (we might not get to “delete p”) 
 auto p2 = make_unique(777); // OK: unique_ptr’s destructor will delete the int 

  if (x<0) return; 
  might_throw(); 
  delete p; 

} 
 

Our guideline checker tool will catch the problematic p. One major use of unique_ptr is to ensure 

proper deletion of objects allocated on the free store in a function. 

4.4  Standard library support 
The ISO C++ standard-library provides containers following the resource manager model, providing RAII 
and move semantics: vector, map, set, unordered_map, and more. It also provides “smart” pointers for 
representing shared ownership (shared_ptr) and unique/exclusive ownership (unique_ptr). 
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5. Threads 
The model presented so far relies on sequential execution in a language with lexical scoping. In a multi-

threaded system, we need to handle more cases. 

Our rule set for concurrency is not yet fully developed. In particular, detached threads with pointers to 

shared data can be tricky. However, threads that are joined at the end of their scopes can be analyzed 

much as called functions and shared_ptrs can be used to keep data alive for threads with less well-

behaved lifetimes. 

There are also obvious opportunities for tools that analyze for race conditions and deadlocks. 

6. Other type-system problems 
Here, we will only briefly mention other ways of breaking the C++ type system. These problems are well 

known and have well-known solutions, so we will not address them here. Misuse of unions and casts can 

lead to type and memory violations (so follow the rules that prevent that [Stroustrup,2015]). For 

example, use a variant class rather than a plain union. Out-of-range access and access through a null 

pointer can lead to type and memory errors (so follow the rules that prevent that).  In particular, use 

array_view and not_null from the Guideline Support Library (GSL) [Sutter, 2015b]. To minimize range 

errors, we also recommend using a make_array() function that returns an owner<array_view<T>> to 

allocate an array on the free store, rather than using new or malloc() directly. The aim of the Code 

Guidelines is to eliminate a large range of errors by mutually supportive rules. No one rule can by itself 

prevent a large class of errors: ban one misuse and others will become popular (this is often referred to 

as “playing whack-a-mole”). Thus, our ideal is a large set of mutually supportive rules that together 

deliver type and memory safety guarantees. 

7. Historical Note 
To solve the problems related to dangling pointers and resource management, we applied a “cocktail” of 

techniques 

 A type system to allow flexible and efficient ownership abstractions 

 A support library to simplify programming by minimizing explicit manipulation of ownership and 

lifetime 

 Local static analysis to extend the static type system to enforce ownership and lifetime rules 

Each, by itself, has been tried repeatedly in C++ and other languages relying on manual resource release. 

The combination allows for a simple solution with no overheads and no compatibility problems in the 

context of C++. 

We note that the problems related to resource leaks and to dangling pointers stemming from manual 

resource management have been pervasive in mainstream programming languages for decades. They 

have been the source of much complexity and many serious errors. They are only partially (and 

expensively) addressed by garbage collection. Obviously, the problem was hard – even though the 

solution is simple and cheap. In particular, we solve the garbage problem by not littering; i.e., not 

generating any “garbage.” 
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This solution have deep roots in C++. Resource management based on constructors and destructors was 

among the very first features added to C to make C++ [Stroustrup,1982]. This work was followed up by 

the integration of resource management and error handling (RAII) [Stroustrup,1994], and eventually 

with Howard Hinnant’s work on unique_ptr and move semantics for C++11 [Hinnant,2002]. 

The use of libraries to complement language features when dealing with resources also go back to the 

earliest days of C++ and is embodied in the current ISO C++ standard library’s containers (e.g., vector), 

resource management pointers (e.g., shared_ptr), threads, file handle (e.g. ifstream), and more. 

The idea of attaching information to a pointer to make it possible to validate its use is equally old. 

Ranges are of course attached to array abstractions in many language and Dennis Ritchie proposed a 

“fat pointer” along those lines. The array_view from the GSL is our deliberately simple variant of that 

idea. For ranges, no static model is sufficient, so some run-time checking is necessary. However, static 

analysis can minimize such checks – often better than individual programmers can in large code bases. 

The dynamic models for ownership (and of immutability (const)), thinking of properties as part of the 

value of an object, has been part of Bjarne’s mental model of C++ for decades. Unfortunately, as for fat 

pointers, the time and space overheads and compatibility precluded their use. They were simply mental 

models. However, their static counterparts are applicable in real-world contexts.  

The use of static analysis for lifetime and ownership is part of a trend going back to the early days of C 

where lint was used to compensate for weaknesses of the type system. There has always been a 

tradeoff between what we could afford for the compiler to check and what was better done by an 

external tool. The tradeoffs are sometimes hard to make and change over time as needs and techniques 

evolve. Some of what our checker tool does could obviously be done by a compiler. 

The static analysis tool is part of a long tradition of static analysis from many academic and industrial 

uses. For example, we rely on a variant of symbolic execution to trace ownership and lifetime through a 

function [Sutter, 2015]. To make this scalable to industrial uses, using local analysis only is essential. 

From now on, we expect serious systems programming languages to apply a similar cocktail of 

technique to achieve simple, safe, and efficient access to hardware. 
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