~ & Microsoft

Where We Are (Today)

USE-DATE.CXX CALENDAR/DATE.H

#include <iostream> #ifndef CHRONO DATE_INCLUDED
#include “Calendar/date.h” #define CHRONO DATE_INCLUDED
#include <iosfwd>
int main() { #include <string>
using namespace Chrono; #include “Calendar/Month.h”
Date date { 22, Month::Sep, 2015 };
std::cout << “Today is “ << date << std::endl; namespace Chrono {
} struct Date {

Date(int, Month, int);

int day() const { return d; }
Month month() const { return m; }
Int year() const { return y; }

private:
int d;
Month m;
int y;
}s

std: :ostream& operator<<(std::ostream&, const Date&);
Std::string to_string(const Date&);

}
#endif // CHRONO_DATE_INCLUDED

std::ostream&, const Datel&);

s(const Date&);

import std
import ca

std::ostream&, const Datel&);

s(const Date&);

What Is The Big Deal?
> Well,

#include <iostream>
#tinclude “Calendar/date.h”

int main() {
using namespace Chrono;
Date date { 18, Month::Sep, 2015 };
std::cout << “Today is “ << date << std::endl;

}

- is 176 bytes of user-authored text file (what user sees)

- expands to (what compiler sees)
» 412,326 bytes with GCC 5.2.0 — or 234,27 6% compressicnexpansion
» 1,203,953 bytes with Clang 3.6.1- or 684,064% inflation
> 1,083,255 bytes with VC++ Dev14 — or 615,485% inflation

What Is The Big Deal?
> Well,

#include <iostream>
#tinclude “Calendar/date.h”

int main() {
using namespace Chrono;

Date date { 18, Month::Sep, 2015 };
std::cout << “Today is “ << date << std::endl;

}

- is 176 bytes of user-authored text file (what user sees)

- expands to (what compiler sees)
» 412,326 bytes with GCC 5.2.0 Source Expansion
» 1,203,953 bytes with Clang 3.6.1 ‘0

e o |
0]

GCC mClang mVC++

100000

% expansion

#include <iostream>
#include “Calendar/date.h”

e #include <iostream>
Why IS [1' q B [9 Deql? #include “Calendar/date.h”

> Preprocessor directive #include is textual copy and
paste

- Compiler works hard to process the same entity multiple
times

— Linker works hard to throw all of them away, except one
- Miserable build throughput

H #include <iostream>
Why Is It a Big Deal? sinclude ciostream
L | | ; !

> Preprocessor directive #include is textual copy and
paste

- Compiler works hard to process the same entity multiple
times

— Linker works hard to throw all of them away, except one
- Miserable build throughput

» Copy: NO consistency guarantee
- Hard to track bugs (famous “ODR" violation)
- No component boundaries, brittle enforcement

e #include <iostream>
Why [S li' q B [9 DeGl? #include “Calendar/date.h”

» Preprocessor directive #include is fextual copy and paste

- Compiler works hard to process the same entity multiple times
- Linker works hard to throw all of them away, except one
- Miserable build throughput

» Copy: No consistency guarantee
- Hard to track bugs (famous “ODR" violation)
- No component boundaries, brittle enforcement

> C Preprocessor technology: Impossible to correctly
parse/analyze a component

- Need to know all macros

Pressing Challenges for Modern C++

> Source Code Organization at Large
- Scaling beyond billions of lines of code

- Producing, composing, consuming components with well-defined
semantics boundaries

> Paucity of Semantics-Aware Developer Tools
- Serious impediment to programmer productivity

- Great disadvantage vis-a-vis contemporary languages (C#, Java,
Ada, etc.)

> Reason not to adopt C++
> Reason to migrate away from C++

> Build fime Scalability of Idiomatic C++

— Distributed build, cloud build, efc.
> Use semantics difference to accelerate build

Aims

» Give C++ a module system, improving
1. Componentization

2. lIsolation (from macros)
3. Build throughput

4. Support for modern semantics-aware developer tools

» Deliver now, use for decades to come
- Target: C++17 (yes, It can be done)

> Non Goals:
- Improve or remove the preprocessor

When Can | Use [i?

> MS VC 2015 Update 1 Timeframe
- Experimental implementation of the module proposal

- Feedback based on use
- Evidence of feasibility (for C++17)

» Clang has an implementation based on “module
Maps”

Program Organizdtion

> Program = Collection of independently translated units
- Each TU processed in isolation, without knowledge of peer TUs

> TUs communicate by brandishing declarations for external
names
- No explicit dependency on TU or component provider
- No good scalable way to check/verify consistency

> Linker resolves users of external names to whichever
definitions happen to match (somehow)
- Type-safe linkage problems
- Opportunities for One Definition Rule (ODR) violation

Basic Linking Model

1.cc (producer of quant) 2.cc (consumer of quant) 3.cc (YAPoQ)

int quant(int x, int y) { extern int quant(int, int); #include <stdlib.h>

return x*x + y*y; int main() { int quant(int x, int y) {

return quant(3, 4); return abs(x) + abs(y);

» Valid programs: (a) 1.cc and 2.cc; (b) 2.cc and 3.cc

» Useful, effective, but low-level and brittle
= Leak implementation details to language specification

20

The Root Cause: One Definition Rule (ODR)

> What is ODR anywaye

- Bjarne Stroustrup:
> 'l asked Dennis when | started in 1979."

— [DMRY:

» “as if there was exactly one section of source text”

» INn tThe C++ standards

- Several pages of opaque text about token-for-token
comparison, name lookup, overload resolution, template
instantiation contexts, etc.

- Bjarne Stroustrup:

> “Every single word about “token comparison” is there to workaround
absence of a real module system”

What is a Module?

> Collection of related translation units,
with a well-defined set of entry points

s
S

> Module name: symbolic reference for

> Module interface: sef of declarations
available to any consumer of @
module

> Module unit: TU element of a module

<

Module

intferface

AY4

N
P

~

Module Unit
(implementation)

J

Vs

Module Unit
(implementation)

a module

Module Unit Module Unit Module Unit
(implementation) (implementation) (implementation)

VAN VAN

Module Unit
(implementation)

—

> My .Module

24

The Pedestrian’s View

> Modules are isolated from macros
- Interface is *compiled” set of exported entifies
- Not affected by macros defined in the importing TU
- Conversely, macros defined in a module do not leak out

v

A unique place where exported entities are declared
- A module can be just one TU, or several Tus with a distinguished TU for exports

v

Every entity is defined at exactly one place, and processed only once
— Owner by the defining module
- Except full semantics analysis of templates
- Exception is made for “global module” (for seamless integration)

v

No new name lookup rules
- We have too many already, and nobody knows how many

v

Modules do not replace header files

- Macro heavy interfaces are likely to continue using header files, with fairly modularized sub-
components

v

Build time is faster (goal)

What To Expect
> Module owns entities Iin its purview
- ODR: every entity is defined exactly once
» Order of consecutive import declarations is irrelevant
> Modules are isolated from macros

» Import declarations only makes name available
- You don’t pay for what you don’t use

» Module metadata suitable for use by packaging systems
> Modules provide ownership

Module purview

Anatomy of a Module Unit

#include <iostream>

import Enum.Utils; // for bits::rep().

module Calendar.Month;

Module purview

V

- namespace Chrono {
export enum class Month { Jan = 1, Feb, Mar, Apr, May, Jun, /*.. */ };

constexpr const char* month_name_table[] = {
“January”, “February”, /* .. */

}s5
export std::ostream& operator<<(std::ostream& os, Month m)
{
assert(m >= Month::Jan and m <= Month: :Dec);
return os << month _name table[bits::rep(m) - 1];
}

j

\

Namespace partition

Impoverished Linking Absiractions
» Strings and bytes

- Name “mangling” or name “decoration”
- Unfortunate leakage to language specification

» Standard “linkage” far behind the practice and needs of
our fime

» Examples:
- GCC and Clang support linkage "visibility”

> default
> hidden
> Infernal
> protected
- VC++ supports:
» dllimport
» dllexport

Production: Compiling a module interface

src.ixx

Module
metadata

{Src:.obj} {My.Modme.ich

36

Production: Compiling a module interface

eon

LsrC'Oij {My.Modme.ich

S

Consumption

{S rC .CXXJ /module:reference My.Module.ifc

[src.obj}

38

Consumption

[src.obj}

39

Compiler Options

> /module

> Turn on module support
> New keywords: module, import, export

> /module:interface

> Force the compiler to interpret source code as module interface
definition

> /module:reference <filename>

> Look for a compiled module interface (IFC) in the file designated by
the path

> /module:search <directory>
» Search directory for referenced files

40

Compiled Module Interface (IFC)

> Binary Format Designed to represent C++
- Intended to be open (ideally used by all C++ implementations)
- Recognizable by C++ programmers and implementers alike
- An open-source reference implementation (e.g. on GitHub)
- Compact, efficient, complete

» Structure:
- Set of homogeneous tables representing all relevant entities
- Ypointers” are represented by typed indices (all 32-bit wide)
- A "header” describing table locations, size, etc.
- Principle: every index is well typed.
- Deterministically produced by input module source file

> Tooling
- Inspecting; embedding into stafic LIB or DLL; etc.
- IDE integration

42

Enhancing Libraries with Module Interfaces

-

Single component delivered to customer

No header file!

Standardization
» “Canlgetitin C++1/72"
- We are trying.

» “Pretty please, give me modules now”
- We are trying

> “What about the IFC format”
- After modules.

» “Reallyeee Are you kidding?”
- No, but | can use some help

lling Visibility

2015 and

