
A Few Good Types

Neil MacIntosh

neilmac@microsoft.com

Before After
void f(_In_reads_(num) Thing* things, unsigned count) {

unsigned totalSize = 0;
for (unsigned i = 0; i <= count; ++i)

totalSize += things[i].GetSize();
// SA can catch this error today

memcpy(dest, things, count);
// SA can catch this error today

}

void caller() {
Thing things[10]; // uninitialized data

f(things, 5);
f(things, 30); // wrong size

} // SA can catch these today

void f(array_view<const Thing> things) {
unsigned totalSize = 0;
for (auto& thing : things)

totalSize += thing.GetSize();

copy(things, dest); // better; use std::copy (range)

}

void caller() {
Thing things[10]; // uninitialized data
f(things); // length ok & uninit compile err
f({things, 5}); // ok, and convenient: add {}
f({things, 30}); // compile-time error

}
2

Some goals of our effort

• Encourage safety-by-construction in systems programming
• Prevent defective code from being compiled
• Catch defects at runtime and fail fast
• Maintain C++ advantages of efficiency and control (“close to the metal”)

• Enable modern static analysis techniques
• Experience: key is to have memory-access semantics clearly described for types
• Enable deep insights into program behavior and early defect detection

• Standards-based, portable and open source library implementation
• Open source on GitHub now: http://github.com/Microsoft/GSL
• Support some major compilers out-the-box (MSVC 2013, MSVC 2015, Clang, GCC)
• Support three platforms out-the-box (Linux, Windows, OS X)

CppCon 2015 A Few Good Types 3

http://github.com/Microsoft/GSL

Specific goals for these types

• Memory safety
• These types enforce bounds-safety, other features prevent dangling.
• Replace nonstandard annotations (e.g. SAL)

• Type safety
• Ensure that unsafe type conversions are prevented

• Efficiency
• Zero-overhead when compared to equivalent hand-written checks.
• Low-overhead compared to unsafe code it replaces

• Abstraction
• Separate concerns: data access (view) from storage (container)

CppCon 2015 A Few Good Types 4

array_view<ValueType,Extents...>

• A view over a contiguous range of elements with a known length
• “Pointer & Length”
• Cheap to copy and move: this is a value type
• Designed to replace any observing pointers that point to more than one object

• Length can be fixed at compile time or specified at runtime
• defaults to runtime (dynamic_range)

array_view<int> av1 = ...; // seq. of ints with dynamic length
array_view<int, dynamic_range> av2 = ...; // same as above
array_view<int, 10> av3 = ...; // sequence of exactly 10 ints

CppCon 2015 A Few Good Types 5

array_view

• Small storage overhead: conceptually { T*, size_type }
• When fixed-length: storage requirements become just { T* }: zero overhead!

• No allocation (ever) – provides a view on existing storage
• size immutable after construction

• All accesses are bounds-checked. Always.
• Violations result in fail-fast.

CppCon 2015 A Few Good Types 6

CppCon 2015 A Few Good Types 7

int read(char* packet, size_t length, /*...*/) {

// ensure the packet we received is large enough
size_t needed = sizeof(Foo) + sizeof(Bar);
if (length < needed)

return -1;

// write foo
Foo* foo = (Foo*)packet;
foo->someEntry = ...; // write the fields of foo

// write bar
packet += sizeof(Foo);
Bar* bar = (Bar*)packet;
bar->someField = ...; // write the fields of bar

// write a fuzzbuzz
packet += sizeof(Bar);
FuzzBuzz* fuzzbuzz = (FuzzBuzz*)packet;
fuzzbuzz->anotherField = ...; // write the fields of fuzzbuzz

}

Wait, WHAT?

CppCon 2015 A Few Good Types 8

int read(array_view<byte> packet, /*other stuff*/) {

// ensure the packet we received is large enough
constexpr size_t needed = sizeof(Foo) + sizeof(Bar);
if (packet.length() < needed)

return -1;

// write foo
auto foo = p.as_array_view<Foo, 1>();
foo[0].someEntry = ...; // write the fields of foo

// write bar
p = p.sub(sizeof(Foo));
auto bar = p.as_array_view<Bar, 1>();
bar[0].someField = ...; // write the fields of bar

// write a fuzzbuzz
p = p.sub(sizeof(Bar));
auto fuzzbuzz = p.as_array_view<FuzzBuzz,1>();
fuzzbuzz[0].anotherField = ...; // write the fields of fuzzbuzz

}

Safe: will fail-fast.

Safety Features

• Only allow safe conversions

array_view<int> ==> array_view<const int> // ok!

array_view<int> ==> array_view<short> // won’t compile!

// only compiles when is_simple_layout_type<T>...

array_view<byte> ==> array_view<T> // ok!

• Constructs readily and sensibly from existing containers
• arrays, std::array, vector... deduces size automatically.

CppCon 2015 A Few Good Types 9

Safety Features

• When array_view is fixed-size, we can use the type system to enforce bounds-safety

int arr[] = { 1, 2, 3, 4 };

array_view<int, 4> av4 = arr; // safe, fixed size view of 4

array_view<int, 2> av2 = arr; // ok, 2 < 4 so conversion allowed

av2 = av4; // ok, 2 < 4 so conversion allowed

av4 = av2; // error – fails to compile as types are not compatible

array_view<int> av_dyn = av2; // ok, going from fixed to dynamic

av4 = av_dyn; // dynamic to fixed will fail-fast on bounds-check

CppCon 2015 A Few Good Types 10

CppCon 2015 A Few Good Types 11

void Write(_In_reads_(count) const char* s, size_t count);

void WriteXml(_In_reads_(cchText) PCSTR szText, size_t cchText)
{

if ((size_t)-1 == cchText) // invisible to callers
cchText = strlen(szText);

while (cchText)
{

if (*szText == '&')
Write(“&”, sizeof(“&”));

else
Write(szText, 1);

cchText--;
szText++;

}
}

Whoops!

CppCon 2015 A Few Good Types 12

void Write(cstring_view s);

void WriteXml(cstring_view text)
{

// no longer need strlen-on-special-case-length

auto it = text.begin();
while (it != text.end())
{

if (*it == '&') // bounds-checked
Write(ensure_z(“&”)); // safe and explicit

else
Write({*it, 1});

++it; // bounds-checked
}

}

CppCon 2015 A Few Good Types 13

void Write(cstring_view s);

void WriteXml(cstring_view text)
{

// no longer need strlen-on-special-case-length

for (auto c : text)) // cannot overrun
{

if (c == '&')
Write(ensure_z(“&”));

else
Write({c,1});

}
}

string_view<CharType, Extent>

• A view over a contiguous range of elements with a known length
• “Pointer & Length”
• Cheap to copy and move: this is a value type

• Length can be fixed at compile time or specified at runtime

• No allocation (ever) – they provide a view on existing storage
• size immutable after construction

• All accesses are bounds-checked. Always.
• Violations result in fail-fast.

CppCon 2015 A Few Good Types 14

Sound familiar?

string_view<CharType, Extent>

• It is just an alias for array_view
template <class CharT, size_t Extent = dynamic_range>

using basic_string_view =

array_view<array_view_options<CharT, unsigned short>, Extent>;

• Convenient aliases for common cases: “w”ide chars and “c”onst views
• string_view

• cstring_view

• wstring_view

• cwstring_view

CppCon 2015 A Few Good Types 15

string_view<CharType, Extent>

• “string” operations become free functions (find, compare, trim....)
• need to add these to our current GSL implementation

• Agnostic regarding zero-termination
• require you to be explicit when initializing from zero-terminated strings
• puts more information into the source code

void f(const char* s) {
string_view sv = ensure_z(s); // initializes correctly
...

}

CppCon 2015 A Few Good Types 16

Extracting sub-views

• “Trim” operations for sub-views are convenient for one-dimension cases
array_view<T, Count> first<Count>() const;
array_view<T> first(size_type count) const;

array_view<T, Count> last<Count>() const;
array_view<T> last(size_type count) const;

array_view<T, Count> sub<Offset, Count>() const;
array_view<T> sub(size_type offset, size_type count) const;

• Arbitrary creation of new sub-view (also works for dimensions > 1)
array_view<T> section(size_type offset, size_type count) const;

CppCon 2015 A Few Good Types 17

Interoperability with legacy code

• Constructor from (T*, size_type)
• Allows construction from parameters that cannot change (ABI compat)

• Direct access to raw pointer
T* data();

• Allows access to the underlying data for passing to legacy functions

• Using these would require you to [[suppress(bounds)]] as you are
performing “trust-me” operations

CppCon 2015 A Few Good Types 18

Diffs from N3851 proposed array_view

• Adds the possibility of fixing extents for each dimension

• Adds conversions to/from byte-representation
• as_bytes(), as_array_view()

• Adds more ctors to support drop-in use

• Describes length in both elements and bytes
• length()/bytes()

• Allows specification of a size type for measuring/indexing

• More slice-n-dice operations: first(), last(), sub()

CppCon 2015 A Few Good Types 19

Diffs from Lib. Fundamentals TS: string_view

• Is a type alias for array_view<CharType...>
• Adds the possibility of fixing length statically

• Adds conversions to/from byte-representation

• Describes length in both elements and bytes

• Allows specification of a size_type for measuring/indexing

• Allows string views of mutable or immutable characters

• Requires explicit construction from zero-terminated strings

• Has string-specific functions as free functions

CppCon 2015 A Few Good Types 20

Early lessons from usage

• Easy replacement at callsites – nearly always ”just add braces”
foo(p, len); ==> foo({p, len});

• Required little change inside callees besides length calculations
for(UINT i = 0; i < len; i++) ==> for(UINT i = 0; i < p.length(); ++i)

• bytes/elements difference makes code clearer to read

• Need to wrap standard and common libs to understand
array_view<byte> (at the least)
memcpy(), memset(), ZeroMemory(), CopyMemory(), ...

CppCon 2015 A Few Good Types 21

Performance

• Performance target: zero overhead
• When compared to pointer+length code that has equivalent checks and

ensures safety

• Compared to unsafe code – some overhead, but as low as possible

• Have begun work to optimize array_view in MSVC compiler
• Will show up in future VS updates.

• More detailed deep dives as we make progress.

CppCon 2015 A Few Good Types 22

Performance: Key Insights

• Optimization can leverage guarantees provided by type system
• e.g. semantics of default copy constructors, const on globals

• make it clear to the optimizer you are a simple, safe type

• Range-check optimizations are important and do-able
• hoisting, elimination...

• considerable body of theory there (and growing)

• MSVC already knows how to do efficient range-checking for .NET Native
compilation – we get to use RNGCHK() without any of the overheads of GC,
framework or runtime.dll.

CppCon 2015 A Few Good Types 23

CppCon 2015 A Few Good Types 24

typedef int my_array[9];
my_array glob;

void f(my_array a) {
// a is effectively a pointer, and the compiler
// knows that from here, the value of that pointer cannot change

for (int i = 0; i < len; ++i)
a[i] = glob[i]; // the compiler knows the address of glob cannot change

// loop is monotonically increasing over an induction variable
}

• Address of ‘a’ can be passed in a register and loaded once

• Address of ‘glob’ can be loaded once

• Strength reduction can be performed on the loop

• Basically...this simple C code becomes few instructions and fast

CppCon 2015 A Few Good Types 25

• ‘p’s pointer member can be passed in a register and loaded once

• Strength reduction can be performed on the loop

• This becomes few instructions and fast

• But what about the range check? It can be eliminated (proved away)!
• Compiler recognizes the bounds-check instruction inside op[]
• In cases it can’t be eliminated, it can often be hoisted above the loop instead

int arr[9] = { ... };
const array_view<int,9> glob = arr; //const means glob’s int* member won’t change

void f(array_view<int,9> p) {
// p contains a single int*. The compiler knows that from here on
// the value of that int* cannot change.

for (int i = 0; i < p.length(); ++i)
a[i] = glob[i]; // this line causes a bounds-check

// loop still has the same properties as previous form
}

Join the fun!

• There is a reference open source implementation....
• Improve it

• Port it

• Use it

• Give feedback and suggestions

• Write your own that’s faster/smaller/...

• Resources:
• https://github.com/Microsoft/GSL (reference implementation)

• http://isocpp.org/ (for links to the array_view and string_view proposals)

CppCon 2015 A Few Good Types 26

https://github.com/sarif-standard/
http://isocpp.org/

