
Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 1

Herb Sutter

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 2

Then: C++98 code Now: Modern C++

circle* p = new circle(42);

vector<shape*> v = load_shapes();

for(vector<shape*>::iterator i = v.begin(); i != v.end(); ++i) {
if(*i && **i == *p)

cout << **i << “ is a match\n”;
}

// … later, possibly elsewhere …

for(vector<shape*>::iterator i = v.begin();
i != v.end(); ++i) {

delete *i;
}

delete p;

auto p = make_shared<circle>(42);

auto v = load_shapes();

for(auto& s : v) {
if(s && *s == *p)

cout << *s << “ is a match\n”;
}

Clean: As clean and direct as any other modern
language, including many of the same new features
(type deduction, range-for, lambdas, …)

Safe: Including exception-safe. No need for “delete,”
leverage automatic lifetime management

Fast: As fast as ever. Sometimes faster (e.g., thanks to
move semantics, constexpr, …)

Compatibility is great
(A) Older code still works

(B) Better-than-ever modern features

But, FAQ: “Can C++ ever really remove stuff?”

Can we get only (B) “by default”? (not actually take anything away)

If so, can we achieve some useful guarantees?

4

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 3

 This is the beginning of open source project(s). We need your help.

 C++ Core Guidelines – all about “getting the better parts by default” (github.com/isocpp)

 Guideline Support Library (GSL) – first implementation available (github.com/microsoft/gsl)
– portable C++, tested on Clang / GCC / Xcode / MSVC, for (variously) Linux / OS X / Windows

 Checker tools – first implementation next month (MSVC 2015 Upd.1 CTP timeframe)
– “type” and “bounds” safety profiles (initially Windows binary, intention is to open source)

 Just getting to this starting point is thanks to collaboration and feedback from:

 Bjarne Stroustrup, myself, Gabriel Dos Reis, Neil MacIntosh, Axel Naumann, Andrew Pardoe,
Andrew Sutton, Sergey Zubkov

 Andrei Alexandrescu, Jonathan Caves, Pavel Curtis, Joe Duffy, Daniel Frampton, Chris Hawblitzel,
Shayne Hiet-Block, Peter Juhl, Leif Kornstaedt, Aaron Lahman, Eric Niebler, Gor Nishanov, Jared
Parsons, Jim Radigan, Dave Sielaff, Jim Springfield, Jiangang (Jeff) Zhuang, & more…

 CERN, Microsoft, Morgan Stanley

 GSL is derived from production code: network protocol handlers; kernel Unicode string
handlers; graphics routines; OS shell enumerator patterns; cryptographic routines; …

5

ISO C++98  C++11  C++14  … ISO C++ and C++ Core Guidelines
6

Core Guidelines
+ safe replacements (GSL)

type safety
+ concepts + modules

bounds safety
+ ranges + contracts

lifetime safety

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 4

 Traditional definition
= type-safe
+ bounds-safe
+ lifetime-safe

 Examples:

 Type: Avoid unions, use variant

 Bounds: Avoid pointer arithmetic,
use array_view

 Lifetime: Don’t leak (forget to delete),
don’t corrupt (double-delete),
don’t dangle (e.g., return &local)

 Future: Concurrency, security, …

type

lifetimebounds .

7

C++ code compiled in the safe subset

is never the root cause of type/memory safety errors,

except where explicitly annotated as unsafe.

Goal is not to provide verified, whole-program guarantees of safety.

Goal is to enable type and memory safety by construction, for as
much of your program code as possible. This type and memory
safety can be enforced at compile time via static language
subset restrictions + at run time by validation/enforcement (fail-
fast, or configurable).

8

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 5

 A profile is:
 a cohesive set of deterministic

and portable subset rules

 designed to achieve a
specific guarantee

 Benefits of decomposed profiles:
 Articulates what guarantee you get for what effort.

 Avoids monolithic “safe/unsafe” when opting in/out.

 Extensible to future safety profiles (e.g., security,
concurrency, arithmetic, noexcept, noalloc, …).

 Enables incremental development/delivery.

secure

concurrency

noexcept

arithmetic

noalloc

9

type bounds lifetime

Goal: Target guarantee No use of a location as a T
that contains an unrelated U

Superset: New libraries byte
variant<Ts…>

Subset: Restrictions Examples:
• No use of uninit variables
• No reinterpret_cast
• No static_cast downcasts
• No access to union mbrs

Open questions

10

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 6

 GSL types
 byte: Raw memory, not char

 variant<…Ts>: Contains one object at a time (“tagged union”)

 Rules
1. Don’t use reinterpret_cast.

2. Don’t use static_cast downcasts.
Use dynamic_cast instead.

3. Don’t use const_cast to cast away
const (i.e., at all).

4. Don’t use C-style (T)expression
casts that would perform a
reinterpret_cast, static_cast
downcast, or const_cast.

5. Don’t use a local variable before it
has been initialized.

6. Always initialize a member variable.

7. Avoid accessing members of raw
unions. Prefer variant instead.

8. Avoid reading from varargs or passing
vararg arguments. Prefer variadic
template parameters instead.

(Also: safe math  separate profile)

11

type bounds lifetime

Goal: Target guarantee No use of a location as a T
that contains an unrelated U

Superset: New libraries byte
variant<Ts…>

Subset: Restrictions Examples:
• No use of uninit variables
• No reinterpret_cast
• No static_cast downcasts
• No access to union mbrs

Open questions Completing GSL types:
• Standardizing variant<>
• Leave no valid reason to

use raw unions + manual
discriminant 12

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 7

type bounds lifetime

Goal: Target guarantee No use of a location as a T
that contains an unrelated U

No accesses beyond the
bounds of an allocation

Superset: New libraries byte
variant<Ts…>

array_view<>
string_view<>
ranges

Subset: Restrictions Examples:
• No use of uninit variables
• No reinterpret_cast
• No static_cast downcasts
• No access to union mbrs

Examples:
• No pointer arithmetic
• Bounds-safe array access

Open questions Completing GSL types:
• Standardizing variant<>
• Leave no valid reason to

use raw unions + manual
discriminant 13

 GSL types

 array_view<T,Extents>: A view of contiguous T objects, replaces (*,len)

 string_view<CharT,Extent>: Convenience alias for a 1-D array_view

 Note: array_view and not_null are the only GSL types with any run-time work

 Rules

1. Don’t use pointer arithmetic. Use array_view instead.

2. Only index into arrays using constant expressions.

3. Don’t use array-to-pointer decay.

4. Don’t use std:: functions and types that are not bounds-checked.

14

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 8

Before After
void f(_In_reads_(num) Thing* things, unsigned count) {

unsigned totalSize = 0;
for (unsigned i = 0; i <= count; ++i)

totalSize += things[i].GetSize();
// SA can catch this error today

memcpy(dest, things, count);
// SA can catch this error today

}

void caller() {
Thing things[10]; // uninitialized data

f(things, 5);
f(things, 30); // wrong size

} // SA can catch these today

void f(array_view<const Thing> things) {
unsigned totalSize = 0;
for (auto& thing : things)

totalSize += thing.GetSize();

copy(things, dest); // better; use std::copy (range)

}

void caller() {
Thing things[10]; // uninitialized data
f(things); // length ok & uninit compile err
f({things, 5}); // ok, and convenient: add {}
f({things, 30}); // compile-time error

}

void f(_In_reads_(num) Thing* things, unsigned count) {
unsigned totalSize = 0;
for (unsigned i = 0; i <= count; ++i)

totalSize += things[i].GetSize();
// SA can catch this error today

memcpy(dest, things, count);
// SA can catch this error today

}

void caller() {
Thing things[10]; // uninitialized data

f(things, 5);
f(things, 30); // wrong size

} // SA can catch these today

After
void f(array_view<const Thing> things) {

unsigned totalSize = 0;
for (auto& thing : things)

totalSize += thing.GetSize();

copy(things, dest); // better; use std::copy (range)

}

void caller() {
Thing things[10]; // uninitialized data
f(things); // length ok & uninit compile err
f({things, 5}); // ok, and convenient: add {}
f({things, 30}); // compile-time error

}

Before

Approach: Preserve all info needed for SA checks
+ Some cases now diagnosed at compile time

(w/o SA)
+ All other cases enforced at run time
+ Simpler code: deduce array length

Target: Zero call overhead vs. original code
Bonus: Simpler code: migrate to range-for

(simple cases)

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 9

 Other languages: unsafe{…}
 Monolithic = all-or-nothing adoption,

specification, and delivery

 This design: [[suppress(profile)]] and [[suppress(rule)]]
 On blocks or statements

 Opt out of a profile, or a specific rule
 Documents what to audit for

 Portable C++CG warning suppression

 [[attributes]] header compatibility
 Modern compilers are already required

to ignore attributes they don’t support

unsafe { // early strawman

}

[[suppress(bounds)]]{

}

[[suppress(type.casts)]]

17

Before After
void f(_In_reads_(num) Thing* things, unsigned count) {

unsigned totalSize = 0;
for (unsigned i = 0; i <= count; ++i)

totalSize += things[i].GetSize();
// SA can catch this error today

memcpy(dest, things, count);
// SA can catch this error today

}

void caller() {
Thing things[10]; // uninitialized data

f(things, 5);
f(things, 30); // wrong size

} // SA can catch these today

void f(array_view<const Thing> things) {
unsigned totalSize = 0;
for (auto& thing : things)

totalSize += thing.GetSize();

copy(things, dest); // better; use std::copy (range)

[[suppress(bounds)]]
memcpy(dest, things.data(), things.bytes());

}

void caller() {
Thing things[10]; // uninitialized data
f(things); // length ok & uninit compile err
f({things, 5}); // ok, and convenient: add {}
f({things, 30}); // compile-time error

}

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 10

 New types interoperate cleanly with existing code, so you can adopt
them incrementally. They also address container diversity.

 All these callers, and all their types… … work with one call target

std::vector<int>& vec; f(vec);

int* p; size_t len; f({p,len}); void f(array_view<int> av);

std::array<int>& arr; f(arr);

x

19

 New types interoperate cleanly with existing code, so you can adopt them
incrementally. They also address string diversity.

 All these callers, and all their types… … work with one call target

std::wstring& s; f(s);

wchar_t* s, size_t len; f({s,len});

QString s; f(s);

CStringA s; f(s);

PCWSTR s; f(s);

BSTR s; f(s); void f(wstring_view s);
_bstr_t s; f(s);

UnicodeString s; f(s);

CComBSTR s; f(s);

CAtlStringW& s; f(s);

/* … known incomplete sample … */
20

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 11

type bounds lifetime

Goal: Target guarantee No use of a location as a T
that contains an unrelated U

No accesses beyond the
bounds of an allocation

Superset: New libraries byte
variant<Ts…>

array_view<>
string_view<>
ranges

Subset: Restrictions Examples:
• No use of uninit variables
• No reinterpret_cast
• No static_cast downcasts
• No access to union mbrs

Examples:
• No pointer arithmetic
• Bounds-safe array access

Open questions Completing GSL types:
• Standardizing variant<>
• Leave no valid reason to

use raw unions + manual
discriminant

Drive out disincentives:
• Passing array_view<> as

efficiently and ABI-stably
as (*,length)

• Elim. redundant checks 21

type bounds lifetime

Goal: Target guarantee No use of a location as a T
that contains an unrelated U

No accesses beyond the
bounds of an allocation

Superset: New libraries byte
variant<Ts…>

array_view<>
string_view<>
ranges

Subset: Restrictions Examples:
• No use of uninit variables
• No reinterpret_cast
• No static_cast downcasts
• No access to union mbrs

Examples:
• No pointer arithmetic
• Bounds-safe array access

Open questions Completing GSL types:
• Standardizing variant<>
• Leave no valid reason to

use raw unions + manual
discriminant

Drive out disincentives:
• Passing array_view<> as

efficiently and ABI-stably
as (*,length)

• Elim. redundant checks

Easy!

Delete every heap object
once (no leaks) …

… and only once
(no corruption)

Don’t deref * to a deleted
object (no dangling)

22

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 12

Any questions?

lifetime

24

Easy!

Delete every heap object
once (no leaks) …

… and only once
(no corruption)

Don’t deref * to a deleted
object (no dangling)

Known hard “40-year” problem

Many wrecks litter this highway
Handle only C because “C is simpler”

or, Incur run-time overheads (e.g., GC)
or, Rely on whole-program analysis

or, Require extensive annotation
or, Invent a new language

or, . . .

We believe we have something conceptually simple
Observation: C++ code is simpler – C++ source contains more information

We can leverage C++’s strong scope and ownership semantics
Special acknowledgments: Bjarne Stroustrup & Neil MacIntosh, + more

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 13

type bounds lifetime

Goal: Target guarantee No use of a location as a T
that contains an unrelated U

No accesses beyond the
bounds of an allocation

No use of invalid or
deallocated allocations

Superset: New libraries byte
variant<Ts…>

array_view<>
string_view<>
ranges

owner<>
Pointer concepts

Subset: Restrictions Examples:
• No use of uninit variables
• No reinterpret_cast
• No static_cast downcasts
• No access to union mbrs

Examples:
• No pointer arithmetic
• Bounds-safe array access

Examples:
• No failure to delete
• No deref of null
• No deref of dangling */&

Open questions Completing GSL types:
• Standardizing variant<>
• Leave no valid reason to

use raw unions + manual
discriminant

Drive out disincentives:
• Passing array_view<> as

efficiently and ABI-stably
as (*,length)

• Elim. redundant checks 25

PSA: Pointers are not evil

Smart pointers are good – they encapsulate ownership

Raw T* and T& are good – we want to maintain
the efficiency of “just an address,” especially

on the stack (locals, parameters, return values)

26

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 14

 GSL types, aliases, concepts
 Indirection concept:

 Owner (can’t dangle): owner<>, containers, smart pointers, …

 Pointer (could dangle): *, &, iterators, array_view/string_view, ranges, …

 not_null<T>: Wraps any Indirection and enforces non-null

 owner<>: Alias, ABI-compatible, building block for smart ptrs, containers, …

 Mainly owner<T*>

 Rules

1. Prefer to allocate heap objects using make_unique/make_shared or containers.

2. Otherwise, use owner<> for source/layout compatibility with old code.
Each non-null owner<> must be deleted exactly once, or moved.

3. Never dereference a null or invalid Pointer.

4. Never allow an invalid Pointer to escape a function.
27

 Local rules, statically enforced
 No run-time overhead

 Whole-program guarantees if we
build the whole program

 Identify Owners, track Pointers
 Enforce leak-freedom for Owners

 Track “points to” for Pointers

 Few annotations
 Infer Owner and Pointer types:

Contains an Owner  Owner

Else, contains Pointer  Pointer

 Default lifetime is correct for the vast
majority of param/return Pointers

 A Pointer tracks its pointee(s) and
must not outlive them

 Track the outermost object
 Class member: track enclosing object

 Array element: track enclosing array

 Heap object: track its Owner

 Pointer parameters are valid for the
function call & independent by default
 Enforced in the caller: Prevent passing a

Pointer the callee could invalidate

 A Pointer returned from a function is
derived from its inputs by default
 Enforced in the callee

28

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 15

Lifetime in three acts

Act I: Local analysis – function bodies

Act II: Calling functions – function parameters

Act III: Calling functions – function return/out values

29

i

 Here’s a warmup:
int *p1 = nullptr, *p2 = nullptr, *p3 = nullptr; // p1, p2, p3 point to null

{
int i = 1;
struct mystruct { char c; int i; char c2; } s = {‘a’, 2, ’b’};
array<int> a = {0,1,2,3,4,5,6,7,8,9};

p1 = &i; // p1 points to i
p2 = &s.i; // p2 points to s
p3 = &a[3]; // p3 points to a

*p1 = *p2 = *p3 = 42; // ok, all valid

} // A

1
2

3

30

p1
p2

p3

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 16

i

 Here’s a warmup:
int *p1 = nullptr, *p2 = nullptr, *p3 = nullptr; // p1, p2, p3 point to null

{
int i = 1;
struct mystruct { char c; int i; char c2; } s = {‘a’, 2, ’b’};
array<int> a = {0,1,2,3,4,5,6,7,8,9};

p1 = &i; // p1 points to i
p2 = &s.i; // p2 points to s
p3 = &a[3]; // p3 points to a

*p1 = *p2 = *p3 = 42; // ok, all valid

} // A: destroy a, s, i invalidate p3, p2, p1

*p1 = 1; // ERROR, p was invalidated when i went out of scope at line A.
// Solution: increase i’s lifetime, or reduce p’s lifetime.

*p2 = *p3 = 1; // (ditto for p2 and p3, except “s” and “a” instead of “i”)

1
2

3

31

p1
p2

p3

 Warmup #2: Taking the address (of any object, incl. an Owner or Pointer)

int i = 1; // non-Pointer

int& ri = i; // ri points to i

int* pi = &ri; // pi points to i

int** ppi = π // ppi points to Pointer pi

auto s = make_shared<int>(2);

auto* ps = &s; // ps points to Owner s

1

2

ps

ppi

32

ri

pi

s

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 17

 Warmup #3: Dereferencing. From the previous example…
int i = 0;

int* pi = &i; // pi points to i

int** ppi = π // ppi points to pi

i

33

pi

ppi

 Warmup #3: Dereferencing. From the previous example…
int i = 0;

int* pi = &i; // pi points to i

int** ppi = π // ppi points to pi

// IN: ppi points to pi, pi points to i
int* pi2 = *ppi; // *ppi points to i

// OUT: pi2 points to i

i

34

pi

ppi

pi2

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 18

 Warmup #3: Dereferencing. From the previous example…
int i = 0;

int* pi = &i; // pi points to i

int** ppi = π // ppi points to pi

// IN: ppi points to pi, pi points to i
int* pi2 = *ppi; // *ppi points to i

// OUT: pi2 points to i

int j = 0;

pi = &j; // pi points to j – **ppi points to j

i

j

35

pi

ppi

pi2

 Warmup #3: Dereferencing. From the previous example…
int i = 0;

int* pi = &i; // pi points to i

int** ppi = π // ppi points to pi

// IN: ppi points to pi, pi points to i
int* pi2 = *ppi; // *ppi points to i

// OUT: pi2 points to i

int j = 0;

pi = &j; // pi points to j – **ppi points to j

// IN: ppi points to pi, pi points to j
pi2 = *ppi; // *ppi points to j

// OUT: pi2 points to j

i

j

36

pi

ppi

pi2

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 19

EOW

end of warmups

37

BOF

beginning of fun

38

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 20

 Getting a Pointer from an Owner:

auto s = make_shared<int>(1);

int* p = s.get(); // p points to s’ = an object
// owned by s (current value)

*p = 42; // ok, p is valid

x

1

39

s

p

 Getting a Pointer from an Owner:

auto s = make_shared<int>(1);

int* p = s.get(); // p points to s’ = an object
// owned by s (current value)

*p = 42; // ok, p is valid

s = make_shared<int>(2); // A: modify s  invalidate p

*p = 43; // ERROR, p was invalidated by assignment to s at line A

1

2

40

s

p

Could a
compiler
really do

this?

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 21

 “This code compiles but rA contains garbage. Can someone explain to me
why is this code invalid?”
unique_ptr<A> myFun()
{

unique_ptr<A> pa(new A());
return pa;

}

const A& rA = *myFun();

use(rA);

41

 “This code compiles but rA contains garbage. Can someone explain to me
why is this code invalid?”
unique_ptr<A> myFun()
{

unique_ptr<A> pa(new A());
return pa; // call this returned object temp_up…

}

const A& rA = *myFun(); // *temp_up points to temp_up’ == “owned by temp_up”
// rA points to temp_up’ …
// … ~temp_up invalidate rA

// A: ERROR, rA is unusable, initialized with invalid
// reference (invalidated by destruction of temporary
// unique_ptr returned from myFun)

use(rA); // ERROR, rA initialized as invalid on line A

how about our compiler? IDE? …

42

Could a
compiler
really do

this?

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 22

auto sv = make_shared<vector<int>>(100);
shared_ptr<vector<int>>* sv2 = &sv; // sv2 points to sv
vector<int>* vec = &*sv; // vec points to sv’
int* ptr = &(*sv)[0]; // ptr points to sv’’

*ptr = 1; // ok

x
43

0

vec

sv2

<>

sv

ptr

auto sv = make_shared<vector<int>>(100);
shared_ptr<vector<int>>* sv2 = &sv; // sv2 points to sv
vector<int>* vec = &*sv; // vec points to sv’
int* ptr = &(*sv)[0]; // ptr points to sv’’

*ptr = 1; // ok

// points-to: sv2 vec ptr
// IN: sv sv’ sv’’

vec-> // same as “(*vec).”, and *vec is sv’
push_back(1); // A: modifying sv’ invalidates sv’’

// OUT: sv sv’ invalid

*ptr = 2; // ERROR, ptr was invalidated by “push_back” on line A

x
44

0

vec

sv2

<>

sv

ptr

0

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 23

auto sv = make_shared<vector<int>>(100);
shared_ptr<vector<int>>* sv2 = &sv; // sv2 points to sv
vector<int>* vec = &*sv; // vec points to sv’
int* ptr = &(*sv)[0]; // ptr points to sv’’

*ptr = 1; // ok

// points-to: sv2 vec ptr
// IN: sv sv’ sv’’

vec-> // same as “(*vec).”, and *vec is sv’
push_back(1); // A: modifying sv’ invalidates sv’’

// OUT: sv sv’ invalid

*ptr = 2; // ERROR, ptr was invalidated by “push_back” on line A

ptr = &(*sv)[0]; // back to previous state to demonstrate an alternative...

x
45

0

vec

sv2

<>

sv

ptr

auto sv = make_shared<vector<int>>(100);
shared_ptr<vector<int>>* sv2 = &sv; // sv2 points to sv
vector<int>* vec = &*sv; // vec points to sv’
int* ptr = &(*sv)[0]; // ptr points to sv’’

*ptr = 1; // ok

// points-to: sv2 vec ptr
// IN: sv sv’ sv’’

vec-> // same as “(*vec).”, and *vec is sv’
push_back(1); // A: modifying sv’ invalidates sv’’

// OUT: sv sv’ invalid

*ptr = 2; // ERROR, ptr was invalidated by “push_back” on line A

ptr = &(*sv)[0]; // back to previous state to demonstrate an alternative...

// IN: sv sv’ sv’’
(*sv2). // *sv2 is sv

reset(); // B: modifying sv invalidates sv’
// OUT: sv invalid invalid

vec->push_back(1); // ERROR, vec was invalidated by “reset” on line B
*ptr = 3; // ERROR, ptr was invalidated by “reset” on line B

46

vec

sv2

<>

sv

ptr 0

Could a
compiler
really do

this?

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 24

 Branches add the possibility of “or”: p can point to x or y

 Loops are like branches: If exit set != entry set, process loop body once more

 “Points to null” removed in a branch that tests against null pointer constant
p = cond ? x : nullptr; // A: p points to x or null
*p = 42; // ERROR, p could have been set to null on line A
if (p != nullptr) // or != 0, or != NULL, …

*p = 42; // ok, p points to x

 try/catch: treat a catch block as if it could have been entered from every
point in the try block where an exception could have been raised
 Record all potential invalidations in the try block (any may have executed)

 Remove any revalidations in the try block (potentially none were executed)

 Note: This is an example of how the model is intentionally conservative.
Finalizing the rules against RWC includes ensuring reasonably low false positives.

47

Lifetime in three acts

Act I: Local analysis – function bodies

Act II: Calling functions – function parameters

Act III: Calling functions – function return/out values

48

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 25

T* p = …;

f(p);

Here, I have a pointer for you.

It’s good. Trust me.

49

 In callee, assume Pointer params are valid for the call, and independent.
void f(int* p) { … } // in f, assume p is valid for its lifetime (≈“p points to p”)

 In caller, enforce no arguments that we know the callee can invalidate.
void f(int*);
void g(shared_ptr<int>&, int*);

shared_ptr<int> gsp = make_shared<int>();

int main() {

f(gsp.get()); // ERROR, arg points to gsp’, and gsp is modifiable by f

auto sp = gsp;
f(sp.get()); // ok, arg points to sp’, and sp is not modifiable by f

g(sp, sp.get()); // ERROR, arg2 points to sp’, and sp is modifiable by f

g(gsp, sp.get()); // ok, arg2 points to sp’, and sp is not modifiable by f

} #1 correctness issue using smart pointers 50

Could a
compiler
really do

this?

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 26

Aside: Smart pointers are great
… but commonly misused

#1 correctness issue with smart pointers:
Accidental silent invalidation in the case just shown (incl. reentrancy)

 can fully address with Lifetime rules

#1 performance issue with smart pointers:
Passing as parameters inappropriately

 can fully address with Guideline rules (see Bjarne’s talk)

51

 Sometimes you want to override the defaults. For example, in STL:

 Insert-with-hint insert(iter,t) assumes iter is into *this (not allowed by default because iter
could be (is!) invalidated by insert). We can express this using [[lifetime(this)]].

 Range-based insert insert(iter1,iter2) assumes iter1, iter2 are not into *this (the default). It
also assumes that iter1 and iter2 have the same lifetime (not the default). We can express
this using [[lifetime(iter1)]].

template<class Key, class T, /*...*/> class map {

iterator insert(const_iterator pos [[lifetime(this)]], const value_type&);

template <class InIter> void insert(InIter first, InIter last [[lifetime(first)]]);

// ...
};

Statically diagnoses some common classes of STL iterator bugs, without debug iterator overhead 52

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 27

// Note: does not require actual header annotation

// template<class Key, class T, /*...*/> class map {
// iterator insert(const_iterator pos [[lifetime(this)]], const value_type&);
// template <class InIter> void insert(InIter first, InIter last [[lifetime(first)]]);
// // ...
// };

map<int,string> m = {{1,"one"}, {2,"two"}}, m2;

m.insert(m2.begin(), {3,"three"}); // ERROR, m2.begin() points to m2, not m

m.insert(m.begin(), {3,"three"}); // ok, m.begin() points to m

m.insert(m.begin(), m.end())); // 2 ERRORS: (a) params point to m, and (b) m is
modifiable by m.insert

m.insert(m2.begin(), m.end())); // ERROR, param1 points to m2, but param2 points to m

m.insert(m2.begin(), m2.end()); // ok, params point to m2, m2 not modifiable by m.insert

Statically diagnoses some common classes of STL iterator bugs, without debug iterator overhead 53

Lifetime in three acts

Act I: Local analysis – function bodies

Act II: Calling functions – function parameters

Act III: Calling functions – function return/out values

54

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 28

int* f(/*…*/);

I see you have a pointer for me.

I wonder where you got it from?

55

56

 In principle, you have to “state” the lifetime of a returned Pointer.
 Caller assumes that lifetime.

 Callee enforces that lifetime when separately compiling callee body.

 Defaults are to minimize the frequency that you have to “state” it explicitly,
so that most of the time you “state” it the convenient way: as whitespace.
 Vast majority of returned Pointers are derived from Owner and Pointer inputs.

No annotation needed.

 If there are no inputs (e.g., Singletons), we assume you’re returning a pointer
to something static. This handles Singleton instance functions, etc.
No annotation needed.

 Only if it’s “something else”: Clear error when separately compiling the callee.
Then annotate the declaration (to fix the compile error).

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 29

 A returned Pointer is assumed to come from Owner/Pointer inputs.

 Vast majority of cases: Derived from Owner and Pointer arguments.

int* f(int* p, int* q); // ret points to *p or *q

char* g(string& s); // ret points to s’ (s-owned)

 Params that are Owner rvalue weak magnets: owner const& parameters

 Ignored by default, because owner const& can bind to temporary owners.

char* find_match(string& s, const string& sub); // ret points to s’

 Only if there are no other candidates, consider owner weak rvalue magnets.

const char* point_into(const string& sub); // ret points to sub’

 Params that are Owner rvalue strong magnets: owner&& parameters

 Always ignored, because owner&& strongly attracts temporary owners.

int* find_match(unique_ptr<X>&&); // ret points to static

57

Declaration Callee
char* // default: points to s’
find_match(string& s, const string& sub);

// --- sample call sites -------------------------------------

string str = “xyzzy”, z = “zzz”;

p = find_match(str, z); // p points to str’

p = find_match(str, “literal”); // p points to str’

p = find_match(str, z+“temp”); // p points to str’

p = find_match(str, “UDL”s); // p points to str’

// all p’s are valid until str is modified or destroyed

char* // default: points to s’
find_match(string& s, const string& sub)
{

if(...) return &s[i]; // ok, {s’}  {s’}

if(...) return &sub[j]; // ERROR, {s’} / {sub’}

char* ret = nullptr; // ret points to null

if(...) ret = &s[i]; // ok, ret points to s’
else ret = &sub[i]; // ok, ret points to sub’
// merge branches: here ret points to s’ or sub’

return ret; // ERROR, {s’} / {s’,sub’}
}

Declaration, and caller code

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 30

operator[] begin

T& // default: points to (*this)’
vector<T>::operator[](size_t);

// --- sample call site ---

vector<int> v = {1,2,3,4};

auto p = &vec[0]; // p points to v’

// p is valid until v is modified or destroyed

iterator // default: points to (*this)’
vector<T>::begin();

// --- sample call site ---

vector<int> v = {1,2,3,4};

auto it = begin(vec); // it points to v’

// it is valid until v is modified or destroyed

 Since C++98: template<class T>
const T& min(const T& a, const T& b) { return b<a ? b : a; }

 “Youbetcha, that’s efficient. I can foresee no problems with that…”

int x=10, y = 2;

int& ref = min(x,y); // ok
cout << ref; // ok, prints 2

int& bad = min(x,y+1);

cout << bad;

;

60

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 31

 Since C++98: template<class T>
const T& min(const T& a, const T& b) { return b<a ? b : a; }

 “Youbetcha, that’s efficient. I can foresee no problems with that…”

int x=10, y = 2;

int& ref = min(x,y); // ok
cout << ref; // ok, prints 2

int& bad = min(x,y+1); // trap for the unwary programmer – and data-dependent
// (std::max would not fail in this case!)

cout << bad; // boom, probably

int& f2();
int f3();

int& bad2 = min(x, f2());

int& bad3 = min(x, f3());

61

 Since C++98: template<class T>
const T& min(const T& a, const T& b) { return b<a ? b : a; }

 “Youbetcha, that’s efficient. I can foresee no problems with that…”

int x=10, y = 2;

int& ref = min(x,y); // ok
cout << ref; // ok, prints 2

int& bad = min(x,y+1); // trap for the unwary programmer – and data-dependent
// (std::max would not fail in this case!)

cout << bad; // boom, probably

int& f2();
int f3();

int& bad2 = min(x, f2()); // ok… if f2 returns a reference with suitable lifetime
// otherwise, trap for the unwary programmer

int& bad3 = min(x, f3()); // trap for the unwary programmer

62

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 32

 Since C++98: template<class T>
const T& min(const T& a, const T& b) { return b<a ? b : a; }

 “Youbetcha, that’s efficient. I can foresee no problems with that…”

int x=10, y = 2;

int& ref = min(x,y); // ok, ref points to x or y
cout << ref; // ok, prints 2

int& bad = min(x,y+1); // A: ERROR, ‘bad’ initialized with invalid reference
// (ref points to x or to temporary y+1 that was destroyed)

cout << bad; // ERROR, ‘bad’ initialized as invalid on line A

int& f2();
int f3();

int& bad2 = min(x, f2()); // ok if f2 lifetime > bad2,
// else ERROR, ‘bad2’ can outlive reference returned from f2

int& bad3 = min(x, f3()); // ERROR, ‘bad3’ initialized with invalid reference
// (can be to temporary returned by f3() which was destroyed)

63

Could a
compiler
really do

this?

type bounds lifetime

Goal: Target guarantee No use of a location as a T
that contains an unrelated U

No accesses beyond the
bounds of an allocation

No use of invalid or
deallocated allocations

Superset: New libraries byte
variant<Ts…>

array_view<>
string_view<>
ranges

owner<>
Pointer concepts

Subset: Restrictions Examples:
• No use of uninit variables
• No reinterpret_cast
• No static_cast downcasts
• No access to union mbrs

Examples:
• No pointer arithmetic
• Bounds-safe array access

Examples:
• No failure to delete
• No deref of null
• No deref of dangling */&

Open questions Completing GSL types:
• Standardizing variant<>
• Leave no valid reason to

use raw unions + manual
discriminant

Drive out disincentives:
• Passing array_view<> as

efficiently and ABI-stably
as (*,length)

• Elim. redundant checks

Iterate & refine:
• Finalizing 1.0 design paper,

incl. shared ownership &
reasonable false positives

• Share prototype this winter64

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 33

65

 Yes, directly (obviously): Statically eliminate classes of errors.

 But also indirectly: We already saw std::min & std::max. Now…

 Q: Why do C++ smart pointers like shared_ptr<T> have “.get()” instead
of a (convenient!) implicit conversion to T*?

 A: Accidental conversion to T* allows code to accidentally compile:

 and make wild pointers (oops, sp+42 compiled, but I meant *sp+42)

 and dangle pointers (oops, didn’t know I got a raw pointer, wasn’t careful)

 Safety affects library design:
 Conjecture: If we can prevent bounds (pointer arithmetic) and lifetime

(dangling) errors, then smart pointers could safely implicitly convert to
raw pointers.

ISO C++98  C++11  C++14  … ISO C++ and C++ Core Guidelines

Core Guidelines

type safety
+ concepts + modules

bounds safety
+ ranges + contracts

lifetime safety

66

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 34

 This is the beginning of open source project(s). We need your help.

 C++ Core Guidelines – all about “getting the better parts by default” (github.com/isocpp)

 Guideline Support Library (GSL) – first implementation available (github.com/microsoft/gsl)
– portable C++, tested on Clang / GCC / Xcode / MSVC, for (variously) Linux / OS X / Windows

 Checker tools – first implementation next month (MSVC 2015 Upd.1 CTP timeframe)
– “type” and “bounds” safety profiles (initially Windows binary, intention is to open source)

 Just getting to this starting point is thanks to collaboration and feedback from:

 Bjarne Stroustrup, myself, Gabriel Dos Reis, Neil MacIntosh, Axel Naumann, Andrew Pardoe,
Andrew Sutton, Sergey Zubkov

 Andrei Alexandrescu, Jonathan Caves, Pavel Curtis, Joe Duffy, Daniel Frampton, Chris Hawblitzel,
Shayne Hiet-Block, Peter Juhl, Leif Kornstaedt, Aaron Lahman, Eric Niebler, Gor Nishanov, Jared
Parsons, Jim Radigan, Dave Sielaff, Jim Springfield, Jiangang (Jeff) Zhuang, & more…

 CERN, Microsoft, Morgan Stanley

 GSL is derived from production code: network protocol handlers; kernel Unicode string
handlers; graphics routines; OS shell enumerator patterns; cryptographic routines; …

67

68

Writing Good C++14… By Default
Herb Sutter

9/22/2015

 2015 Herb Sutter except material otherwise referenced. 35

Questions? (really)

